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1 Introduction
There is no agreement among researchers in the area of automated deduction about which features
(besides computational efficiency) a suitable theorem proving system for non-classical (in particular
modal) logics should have. In our opinion, such a system should (A) avoid ad hoc manipulation
of the modal formulas; (B) provide a simple and uniform treatment of a wide variety of modal
(and other non-classical) logics; (C) form an adequate basis for developing efficient proof search
methods; (D) yield proofs according to familiar, natural inference patterns; (E) provide an explicit
model construction. In this paper we describe a modal theorem proving system, that we call KEM ,
which appears to satisfy all this requirements: it treats the full modal language; it works for a wide
class of normal modal logics (and it can be extended to other non-classical logics, e.g. temporal or
conditional logics); and it forms a basis for combining both efficiency and naturalness. Moreover it
automatically generates models using a label formalism to bookkeep “world” paths. KEM results
from the combination of two kinds of rules: rules for processing the propositional part (which are the
same for all modal logics), and rules for manipulating labels according to the accessibility relations
for the given logics. The key features of KEM are outlined as follows.

2 Label Formalism
A set = of “world” labels is introduced, where a label i is defined to be either (i) an element of a
(non empty) set ΦC = {w1, w2, w3, . . .} of constant “world” symbols, or (ii) an element of a (non
empty) set ΦV = {W1, W2, W3, . . .} of “world” variables, or (iii) a “path” term (k′, k) where (iiia)
k′ ∈ ΦC ∪ ΦV and (iiib) k ∈ ΦC or k = (m′, m) where (m′, m) is a label. Intuitively, we may think
of a label i ∈ ΦCas denoting a world, and a label i ∈ ΦV as denoting a set of worlds in some Kripke
model (we assume familiarity with standard Kripke semantics, see [Ch80]). A label i = (k′, k) may
be viewed as representing a path from k to a (set of) world(s) k′ accessible from k. For example, the
label (W1, w1) represents a path which takes us to a set W1 of worlds accessible from the initial world
w1; (w2, (W1, w1))) represents a path which takes us to a world w2 accessible by any world accessible
from w1, (i.e., accessible by the subpath (W1, w1)) and so on (notice that the labels are read from
right to left). For any label i = (k′, k) we call k′ the head of i, k the body of i, and denote them
by h(i) and b(i) respectively. Notice that these notions are recursive: if b(i) denotes the body of i,
then b(b(i)) will denote the body of b(i), b(b(b(i))) will denote the body of b(b(i)); and so on. For
example, if i is (w4, (W3, (w3, (W2, w1)))), then b(i) = (W3, (w3, (W2, w1))), b(b(i)) = (w3, (W2, w1)),
b(b(b(i))) = (W2, w1), b(b(b(b(i)))) = w1. We call each of b(i), b(b(i)), etc., a segment of i. Let s(i)
denote any segment of i (obviously, by definition every segment s(i) of a label i is a label); then
h(s(i)) will denote the head of s(i). For any label i, we define the length of i, l(i), as the number of
world symbols in i. We call a label i restricted if h(i) ∈ ΦC , otherwise we call it unrestricted.

3 Basic Unifications
We define a substitution in the usual way as a function σ : ΦV → =− where =− = = − ΦV . For
two labels i, k and a substitution σ we shall use (i, k)σ to denote both that i and k are unifiable
(briefly, are σ-unifiable) and the result of their unification. On this basis we define several specialised,
logic-dependent notions of σ-unification.

(i, k)σK = (i, k)σ ⇐⇒
(i) at least one of i and k is restricted, and

(ii) for every s(i), s(k), l(s(i)) = l(s(k)), (s(i), s(k))σK
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(i, k)σD = (i, k)σ

(i, k)σT = (s(i), k)σ ⇐⇒
l(i) > l(k), and ∀h(s(i)) : l(s(i)) ≥ l(s(k)), (h(s(i)), h(k))σ = (h(i), h(k))σ or

(i, k)σT = (i, s(k))σ ⇐⇒
l(k) > l(i), and ∀h(s(k)) : l(s(k)) ≥ l(s(i)), (h(i), h(s(k)))σ = (h(i), h(k))σ

(i, k)σX4 = h(k)× h(b(k))× (. . .× (t∗(k)× (i, s(k))σX) . . .)) ⇐⇒
l(i) ≤ l(k) and (i, s(k))σX , h(i) ∈ ΦV , or

(i, k)σX4 = h(i)× h(b(i))× (. . .× (t∗(i)× (s(i), sk)σX) . . .)) ⇐⇒
l(k) ≤ l(i) and (s(i), k)σX , h(k) ∈ ΦV

where t∗(k) (resp. t∗(i)) denotes the element of k (resp. i) which immediately follows s(k) (resp.
s(i)) and X = K,D.

(i, k)σS4 =

{
(i, k)σT h(shortest{i, k} ∈ ΦC

(i, k)σD4 h(shortest{i, k} ∈ ΦV

(i, k)σX5 = (h(i), h(k))σX × (b(b(i)), b(k))σL ⇐⇒
(h(i), h(k))σX and (b(b(i), b(k))σL if h(i) ∈ ΦV , or

(i, k)σX5 = (h(i), h(k))σX × (b(i), b(b(k)))σL ⇐⇒
(h(i), h(k))σX and (b(i), b(b(k)))σL if h(k) ∈ ΦV

where

σL =

{
σX or σX5 if l(i) = l(k)
σX5 if l(i) 6= l(k)

for X = K, D and, if X = K, at least one of h(i), h(k), h(b(i)), h(b(k)) is in ΦC .

(i, k)σS5 = (h(i), h(k))σ

For L = 4, 5, B we define the L-reduction of a label i to be a function rL : = → = determined as
follows:

r4(i) =

{
(h(i), b(b(i))) i restricted
(h(i), r4(b(i))) otherwise

rB(i) =

{
b(b(i)), i unrestricted and l(i) > 2
(h(i), rB(b(i))), i restricted

r5(i) =

{
(h(i), b(b(i))) if i, b(i) unrestricted
(h(i), r5b(i)) otherwise

We are now able to define the notion of two labels i, k being σL-unifiable

(i) L = K, D, S5

(i, k)σL ⇔ (i, k)σL

(ii) L = K4, KB, K5, K45, K5B, D4, DB, D5, D45, T, B, S4

(i, k)σL ⇔ either

(i) (i, k)σ∗, or

(ii) (i, rL(k))σ∗, or

(iii) (rL(i), k)σ∗, or

(iv) (rL(i), rL(k))σ∗
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where
for l(i) = l(k) for l(i) 6= l(k)
σ∗ = σK , L = K4, KB, K5, K45, K5B σ∗ = σT , L = T, B
σ∗ = σD, L = D4, DB, D5, D45, T, B, S4 σ∗ = σX4, L = K4, D4, S4.
σ∗ = σX5, L = K5, D5 σ∗ = σX5, L = K5, D5, K45, D45, K5B.

The following table gives a complete picture of the logics we are considering.

K D T K4 D4 S4 K5 D5 S5 KB DB B K45 D45 K4B
r4 r4 r4 r5 r5 rB rB rB r4 r4 r4, rB

σK σD σT σK4 σD4 σS4 σK5 σD5 σS5 σK σD σT σK5 σD5 σK5

The notions of L-reduction and σL-unification are meant to mirror the formal properties of the acces-
sibility relation in the Kripke semantics for the various modal logics. For example the notions of σK-
and σD-unification are related in an obvious way to the idealization condition. Thus, (w2, (W1, w1)),
(W3, (W2, w1)) are σD-unifiable but not σK-unifiable (since the segments (W1, w1), (W2, w1) are not
σK-unifiable by condition (i) of the above definition), while they are. The reason is that in the
“non idealisable” logic K the “denotations” of W1 and W2 may be empty (i.e., there can be no
worlds accessible from w1), which obviously makes their unification impossible, while in the “ide-
alisable” logic D they are not empty, which makes them to be unifiable “on” any constant. For
the notion of σT -unification take for example i = (w3, (W2, (w2, w1))) and k = (w3, (W1, w1)))).
Here (W2, w3)σ = (w3, w3)σ. Then i and k σT -unify to (w3, (w2, w1)). This intuitively means
that the world accessible from a subpath s(i) = (W2, (w2, w1)) after deletion of the “irrelevant”
(because of reflexivity) step to an arbitrary world in the set W2 are accessible from any path
k which turns out to be identical with s(i). For the notion of σX4-unification take for example
i = (W3, (w2, w1)) and k = (w5, (w4, (w3, (W2, w1)))). Here s(k) = (w3, (W2, w1)). Then i and k σK4-
unify to (w5, (w4, (w3, (w2, w1)))) since ((W3, (w2, w1)), (w3, (W2, w1)))σ

K . This intuitively means that
all the worlds accessible from a subpath s(k) of k are accessible from any path i which turns out to
be identical with s(k).

4 Rules of KEM
The following formulation uses Smullyan-Fitting’s “α, β, ν, π” unifying notation for signed formulas.
A signed formula followed by an arbitrary label will be called a labelled signed formula (LS-formula).
As usual XC is used to denote the conjugate of a signed formula X, i.e. the result of changing the
sign of X to its opposite. Two LS-formulas X, i, Z, k such that Z = XC and (i, k)σL will be called
σL-complementary.
0-premise rule:

X XC PB [i restricted]

1-premise rules: α, i
αn, i

(n = 1, 2) ν, i
ν0, (i

′, i)
[ i′ ∈ ΦV , i′ new] π, i

π0(i
′, i)

[ i′ ∈ ΦC , i′ new]

2-premise rules:

β, i
βC

1 , k
β2, (i, k)σL

[(i, k)σL]

β, i
βC

2 , k
β1, (i, k)σL

[(i, k)σL]

X, i
XC , k

× (i, k)σL
[(i, k)σL]

Here the α-rules are just the usual linear branch-expansion rules of the tableau method, while the
β-rules correspond to such common natural inference patterns as modus ponens, modus tollens, etc.
The rules for the modal operators bear a not unexpected resemblance to the familiar quantifier rules
of the tableau method. “i′ new” in the proviso for the ν- and π-rule obviously means: i′ must not
have occurred in any label yet used. Notice that in all inferences via an α-rule the label of the
premise carries over unchanged to the conclusion, and in all inferences via a β-rule the labels of the
premises must be σL-unifiable, so that the conclusion inherits their unification. PB (the “Principle
of Bivalence”) represents the (LS-version of the) semantic counterpart of the cut rule of the sequent
calculus (intuitive meaning: a formula A is either true or false in any given world). PNC (the “Prin-
ciple of Non-Contradiction”) corresponds to the familiar branch-closure rule of the tableau method,
saying that from a contradiction of the form (occurrence of a pair of σL-complementary LS-formulas)
X, i, XC , k on a branch we may infer the closure of the branch. The (i, k)σL in the “conclusion” of
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PNC means that the contradiction holds “in the same world”.

5 Proof search
The following definitions are extensions to the modal case of those given for the classical case, [Mo88].
By a KEM -tree we mean a tree generated by the rules of KEM . Given a branch τ of a KEM -tree
we shall call an LS-formula X, i E-analysed in a branch τ if either (i) X is of type α and both α1, i
and α2, i occur in τ ; or (ii) X is of type β and one of the following conditions is satisfied: (a) if
βC

1 , k occurs in τ and (i, k)σL, then also β2, (i, k)σL occurs in τ , (b) if βC
2 , k occurs in τ and (i, k)σL,

then also β1, (i, k)σL occurs in τ ; or (iii) X is of type ν and ν0, (i
′, i) occurs in τ for some i′ ∈ ΦV

not previously occurring in τ , or (iv) X is of type π and π0, (i
′, i) occurs in τ for some i′ ∈ ΦC not

previously occurring in τ . We shall call a branch τ of a KEM -tree E-completed if every LS-formula
in it is E-analysed and there are no complementary formulas which are notσL-complementary. Fi-
nally, we shall call an LS-formula X, i of type β fulfilled in a branch τ if either β1, i

′ or β2, i
′ occur

in τ , where either (i) i′ = i, or (ii) i′ is obtained from i by instantiating h(i) to a constant not
occurring in i, or (ii i) i′ = (i, k)σL for some βC

n , k, n = 1, 2, such that (i, k)σL. We shall say that a
branch τ of a KEM -tree is completed if it is both E-completed and all the LS-formulas of type β
in it are fulfilled, it is σL-closed if it ends with an application of PNC. We shall call a KEM -tree
completed if every branch is completedand it is σL-closed if all its branches are σL-closed. A L-proof
of a formula A is a σL-closed KEM -tree starting with FA, i. Since KEM ’s basic control structure
is non deterministic, to build a KEM proof search algorithm we have to rely on the procedure for
the canonical KEM -trees. A KEM -tree is canonical iff all the applications of 1-premise rules come
before the applications of 2-premise rules, which preceed the applications of the 0-premise rule.

The following procedure starts from the 1-branch, 1-node tree consisting of FA, i and applies the
rules of KEM until the resulting KEM -tree is either closed or completed. At each stage of proof
search (i) we choose an open non completed branch τ . If τ is not E-completed, then (ii) we apply
the 1-premise rules until τ becomes E-completed. If the resulting branch τ ′ is neither closed nor
completed, then (iii) we apply the 2-premise rules until τ becomes E-completed. If the resulting
branch τ ′ is neither closed nor completed, then (iv) we choose an LS-formula of type β which is
not yet fulfilled in the branch and apply PB so that the resulting LS-formulas are β1, i

′ and βC
1 , i′

(or, equivalently β2, i
′ and βC

2 , i′), where i = i′ if i is restricted, otherwise i′ is obtained from i by
instantiating h(i) to a constant not occurring in i; (v) if the branch is not E-completed nor closed
because there are complementary formulas which are notσL-complementary, then we apply PB to
one of the two complementary formulas with a restricted label which occurs previously in the branch,
and which unifies with one of the labels of the complementary formulas, (vi) we repeat the procedure
in each branch generated by PB.

Remark 1 Notice that in this procedure PB is applied only to immediate signed subformulas
of LS-formulas which occur (unfulfilled) in the chosen branch, and only when the branch has been
E-completed. Such a restricted use of the cut rule removes from the search space the redundancy
generated by the standard tableau branching rules. Indeed it is easy to see that the given procedure
makes all choices in such a way that at each step of proof search the search space is as small as
possible, while preserving the subformula property of proofs.

Remark 2 It is worth to note that each tree is a (class of) Hintikka’s model(s) where the labels
denote worlds (i.e., Hintikka’s modal sets), and the operations (unifications and reductions) on labels
behave according to the conditions placed on the accessibility relations for L.

It can be shown (see [ACG94]) the following

THEOREM 1 A KEM -tree for a formula A of L is closed iff the canonical KEM -tree for A is
closed.

THEOREM 2 A canonical KEM -trees always terminates.
This theorem follows from the fact that the subformulas of a formula A are finite in number and

the number of labels which can occur in the KEM -tree for A is limited by the number of modal
operators in A.
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6 Soundness and Completeness
We shall show that the KEM versions of the logics L we have been considering are equivalent to their
respective axiomatic formulations. In order to do this, we have to prove (i) that the characteristic
axioms and the inference rules of the axiomatic L are derivable in KEM , and (ii) that the rules of
KEM are derived rules in the axiomatic L. To prove (ii) we show that the rules of KEM hold in a
model for the respective L.

Let F =< G, R > be a Kripke frame and let M =< G, R, v > be a Kripke model with the usual
conditions on their elements; R is defined as ΓRΓ′ ⇔ {A : 2A ∈ Γ} ⊆ Γ′, where Γ denotes an
element of the not empty set G; and v is as usual.

We now define a translation function g from labels to the model’s frame as follows:
g : = → F so that:
(a) If i ∈ ΦC then g(i) = ∃Γ ∈ G
b) If i ∈ ΦV then g(i) = ∀Γ ∈ G
(c) If l(i) = n then we shall denote by im the h(j) such that l(j) = m, m ≤ n, and j is a segment

of i; whence
g(i) = Qg(i1)Qg(i2)(g(i1)Rg(i2) ∧Qg(i3)(g(i2)Rg(i3) ∧ · · · ∧Qg(in)(g(in−1Rg(in))))
where Q denotes either ∀ or ∃ according to what kind of label is its im, Q will denote ∃(∀) if Q is
∀(∃), and R is the frame’s relation.

Let f be the translation function from LS-formulas to the model defined as:
f(SA, i) = g(i), v(A, g(h(i))) = S

LEMMA 1. For any i ∈ = and L = 4, B, 5 if X, i then X, rL(i).
Proof L = 4. We analyse only the relevant cases. Let us suppose that X, i ⇒ X, r4(i) doesn’t

hold; then X, i will be true and X, r4(i) will be false. If i is restricted also r4(i) is restricted and
h(r4(i)) = h(i), thus obtaining a contradiction. If i is unrestricted we put g(h(i)) = Γ, g(h(b(i))) = Γ′

and g(h(b(b(i)))) = Γ′′; from the definition of f and the hypothesis it follows that . . . QΓ′′(. . . ∧
QΓ′(Γ′′RΓ′ ∧ ∀Γ(Γ′RΓ))), so that v(A, Γ) = S and QΓ′′(. . . ∧ ∃Γ(Γ′RΓ)), v(A, Γ) = SC . From the
former we obtain v(A, Γ) = S ⇔ v(2A, Γ′) = S but 2A → 22A holds in each world, therefore
v(22A, Γ′) = S ⇔ v(2A, Γ) = S and, because of transitivity, v(2A, Γ′′) = S. From the latter we
obtain v(A, Γ) = SC ⇔ v(2A, Γ′′) = SC which contradicts the result following from the truth of X, i.

L = B. We only prove the case(s) in which i is unrestricted. Let us suppose that X, i ⇒ X, rB(i)
doesn’t hold, whence, by putting g(h(i)) = Γ, g(h(b(i))) = Γ′ and g(h(b(b(i)))) = Γ′′, we obtain
. . . ∀Γ(Γ′RΓ), v(A, Γ) = X and g(i) = . . . QΓ′′(. . .∧QΓ′((Γ′′RΓ′)∧∀Γ(Γ′RΓ))); but, by the symmetry
of the model, this implies also Γ′RΓ′′ and hence v(A, Γ′′) = S, from which, since our hypothesis states
v(A, Γ′′) = SC , we get a contradiction.

L = 5. Let us suppose that X, i ⇒ X, r5(i) doesn’t hold, whence, by putting g(h(i)) = Γ,
g(h(b(i))) = Γ′ and g(h(b(b(i)))) = Γ′′, we obtain . . . QΓ′′(. . . ∀Γ′(Γ′′RΓ′) ∧ ∀Γ(Γ′RΓ)), v(A, Γ) = S
and . . . QΓ′′∀Γ(Γ′′RΓ), v(A, Γ) = SC ; but, by the euclideannes of the model and the predicate calculus
we get a contradiction.

LEMMA 2. For any i, k ∈ = and L = K, K4, K5, D5, T, B, S4, S5, if X, i and (i, k)σL, then X, k.
Proof. The proof is by induction on the length of the labels. If min{l(i), l(k)} = 1, then at least

one of i and k is either a constant or a variable, so that five cases will be present, by the definition of
unifications according to our label expansion rules: i, k are either i) two constants, or ii) a variable
and a constant, or iii) two variables, or iv) a variable and a label, or v) a constant and a label.1

Case i) For L = K, D, S5, let us suppose that X, i,XC , k and (i, k)σL, but two constants unify
if and only if they are the same constant, and so i = k; therefore from the hypothesis and the
definition of v and f we get v(A, g(i)) = S and v(A, g(k)) = SC , and also g(i) = g(k), thus obtaining
a contradiction.

Case ii) If i(k) is a variable and k(i) is a constant, then there exists a substitution σ so that
iσ = k(kσ = i), whence (i, k)σL, from which the result follows by the same argument as case i).

1Cases ii), iii), and iv) are not found in KEM proofs, but they are useful both for dealing with cases in the inductive
step and for case v).
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Case iii) and iv) These cases are identical to the previous one because: 1) each variable unifies
with any label, and 2) G is not empty.

Case v) For L = T, S4, S5. Let us assume, for the sake of economy, that l(i) = 1 and l(k) > 1; for
S5 we have (i, k)σS5; this mean (h(i), h(k))σS5 but h(i) = i, therefore h(k) ∈ ΦV and so this case falls
under case ii) due to the equivalence relation of the model. For L = T, S4 if (i, k)σL then each h(s(k))
so that l(s(k)) > 1 belongs to ΦV , therefore we have g(k) = ∀g(h(s2(k)))((g(i)Rg(h(s2(k))) ∧ . . .-
∧∀g(h(k))(g(h(b(k)))Rg(h(k)))) then through reflexivity and the definition of v and f repeating the
argument of case i) we get the result we want.

For the inductive step we have min{l(i), l(k)} = n > 1. Let us assume inductively that the lemma
is valid up to n; if l(i) = l(k) we shall write i and k as (h(i), b(i)) and (h(k), b(k)), respectively. Given
that (i, k)σL, we get by the inductive hypothesis that (b(i), b(k))σL; thus we have to analyse only
h(i) and h(k) which, if L = K, fall under the cases i) and ii); for L = D, S5 we have to examine
case iii). Since two variables unify on any label i.e., ∀i ∈ =, (h(i))σ = j and (h(i))σ = j, we get
g(h((b(i), b(k))σL)) = ∃Γ, and thus, by the seriality condition which holds in all the standard models
of the logics we are considering, we obtain ∃Γ : ΓRΓ′, so that g(h(i)) and g(h(k)) are not empty,
like their intersection. If we suppose that the lemma doesn’t hold we get by f, v(A, g(h(i))) = S and
v(A, g(h(k))) = SC , but then there exists a world belonging to g(h(i)) ∩ g(h(k)) where a formula A
is true and false at the same time.

L = K4, D4, S4. If l(i) < l(k) (the case in which l(k) < l(i) is managed in the same way) we
shall write k as (h(k), (. . . , s(k)) . . .) where l(i) = l(s(k)). By hypotheses (i, kσL whence (i, s(k))σL

and h(i) ∈ ΦV ; moreover, let us suppose that the lemma doesn’t hold. By the definitions of f and
g, if we put g(h((i, s(k))σL)) = Γ, then f(X, i) = . . . ∀Γ(g(h(b(i)))RΓ), v(A, Γ) = S and f(XC , k) =
. . . QΓ(g(h(b(i)))RΓ ∧ . . . ∧ g(h(b(k)))Rg(h(k)), v(A, g(h(k))) = SC from which, by transitivity and
the predicate calculus, we obtain . . . Qg(h(k))(g(h((i, s(k))σL))Rg(h(k)), v(A, g(h(k))) = SC , which
leads to a contradiction. For S4 we have to deal with another case which is the case a) of T bellow.

L = T . Let us suppose that the lemma does not hold. If l(i) < l(k) (the case l(k) < l(i)
is analogous) we shall write i and k respectively as (h(i), b(i)) and (h(k), (. . . , s(k)) . . .) where
l(b(i)) = l(s(k)), we shall analyse two cases: a) h(i) ∈ ΦC ; b) h(i) ∈ ΦV . a) Due to hypotheses
(i, k)σT whence (b(i), s(k))σ and (h(i), t∗(k))σ = (h(i), h(k))σ but this is the same as case v) of the
inductive base. b) By hypotheses (i, k)σL whence (b(i), s(k))σ and for each s∗(k) so that l(s∗(k)) >
l(b(i))(h(i), h(s∗(k)))σ = (h(i), h(k))σ but this is possible if and only if at least one of the h(s∗(k)) ∈
ΦC ; by v, fand g we get f(X, i) = . . . ∀g(h(i))(g(h((b(i), (s(k))σ))Rg(h(i))), v(A, g(h(i))) = S and
if we denote g(h((b(i), (s(k))σ)) by Γ then we have f(XC , k) = . . . ∀g(h(i))(ΓRg(h(i))) ∧ . . . ∧
∃g(h(s∗(k))(. . . g(h(b(k)))Rg(h(k))), v(A, h(k)) = SC from which, by reflexivity and the predicate
calculus, we obtain . . . ∀g(h(i))∃g(h(s(k)))(ΓRg(h(s∗(k))), v(A, g(h(s∗(k)))) = SC , which leads to a
contradiction.

L = X5. Let us suppose that the lemma does not hold. From hypotheses we have (i, k)σX5 and
then (h(i), h(k))σ and either (b(i), b(b(k)))σL or (b(k), b(b(i)))σL; moreover, we know that h(i) 6= h(k)
(if they are equal then i = k). Therefore we have two cases a) the two head are two variable;
b) they are one variable and one constant. By definitions of v, g, and f , and if we put either
(b(i), b(b(k)))σL or (b(k), b(b(i)))σL with Γ, we obtain f(X, i) = . . . Qg(h(i))(ΓRg(h(i))), v(A, h(i)) =
S and f(XC , k) = . . . QΓ(g(h(b(k)))((ΓRg(h(b(k)))) ∧ Qg(h(k))(g(h(b(k)))Rg(h(k)))), v(A, h(i)) =
SC ; due to the euclideannes of the model Qg(h(i))(g(h(b(i)))Rg(h(i))), this implies that there exists
a world belonging to g(h(i)) ∩ g(h(k)) in which a formula A is at the same time true and false.
g(h(i)) ∩ g(h(k)) is not empty by the facts that at least one among h(i), h(k) is a variable and
(i, k)σX5. If either (b(i), b(b(k)))σX5 or (b(k), b(b(i)))σX5 we can repeat the above reasoning as far as
we arrive to deal with (s(i), s(k))σ for which the inductive hypothesis holds.

THEOREM 3. `L A ⇔`KEM(L) A for L = K, K4, KB, K45, K4B, K5, D, D4, DB, D45, D5,-
T, B, S4, S5. Proof⇒ The characteristic axioms of L and modus ponens are provable in KEM (see
[AG93] and [DM91] for a proof that modus ponens is a derived rule in KE, the propositional subsytem
of KEM). We give a KEM -proof of the rule of necessitation. Let us assume that `KEM(L) A. Then
the following is KEM -proof of 2A.
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1. F2A, w1

2. FA, (w2, w1)

3. ×(w2, w1)

Proof⇐ The α-rules and PB are obviously derived rules in L. For theβ-rules and PNC. By the
hypothesis: (i, k)σL and hence, by the above lemmas and the definitions of the σL-unifications, the
formulas involved have the same value in i (k) and (i, k)σL; after that these rules become rules of KE,
and thus they are derived rules in L. For ν-rules: let us suppose ν = T2A; if we put g(h(i)) = Γ and
g(h(i′, i)) = Γ′, then v(2A, Γ) = T ; but v(2A, Γ) = T ⇔ ∀Γ′ : ΓRΓ′, v(A, Γ′) = T , and (∀Γ′ : ΓRΓ′,-
v(A, Γ′) = T ) = f(ν0, (i

′, i)) with i′ unrestricted. The proof of Eπ is similar.

7 Final remarks
Our approach exploits various ideas already occurring in the literature ([Cat91], [DG93], [Wri85]).
A sequent based modal proof system using indexed formulas has been proposed by Jackson and
Reichgelt [JR89]. This system is the most closely related to ours. The index formalism is almost
identical, but the unification algorithm used to resolve complementary formulas in the various modal
logics does not work for the non-idealisable K logics. Similar ideas are found in Wallen’s matrix-
connection method [Wal90]. This is probably the most refined automated proof search system for
non-classical logics currently available. However it yields proofs in a natural inference-style (e.g. in
the form of sequent or tableau proofs) only derivatively and works only for a few standard modal
logics. In conclusion, we believe that KEM has several advantages over most current modal theorem
proving systems. Its PROLOG implementation (see [ACG94]) shows that the label unification scheme
it uses is natural and efficient. Moreover several extensions of KEM to handle multi modal logics
with various interaction between modalities are under work.
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